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SUMMARY 
A finite volume multigrid procedure for the prediction of laminar natural convection flows is presented, 
enabling efficient and accurate calculations on very fine grids. The method is fully conservative and uses 
second-order central differencing for convection and diffusion fluxes. The calculations start on a coarse 
(typically 10 x 10 control volumes) grid and proceed to finer grids until the desired accuracy or maximum 
affordable storage is reached. The computing times increase thereby linearly with the number of control 
volumes. 

Solutions are presented for the flow in a closed cavity with side walls at different temperatures and 
insulated top and bottom walls. Rayleigh numbers of lo4, lo5 and lo6 are considered. Grids as fine as 
640 x 640 control volumes are used and the results are believed to be accurate to within 0.01 YO. Second- 
order monotonic convergence to grid-independent values is observed for all predicted quantities. 
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1. INTRODUCTION 

The prediction of complex flows requires the use of very fine grids if high numerical accuracy is 
demanded. However, standard iterative finite difference (FD) and finite volume (FV) methods are 
known to converge more and more slowly as the grid is refined: the number of iterations required 
for convergence increases typically linearly, and computing time therefore quadratically. Com- 
putations on grids with more than 100 points in one space direction are hence extremely 
expensive, and are yet in many instances not accurate enough. 

More accurate results can be obtained by using Richardson extrapolation if solutions on at 
least two consecutive grids are available, as done by de Vahl Davis.' However, for this 
extrapolation to be accurate it is necessary that the two grids employed are fine enough to 
guarantee monotonic convergence with a known order, which again may be difficult to satisfy (see 
the discussion by de Vahl Davis' about calculations for Rayleigh number lo6). 

In recent years multigrid FD and FV methods applicable to the solution of coupled non-linear 
equations were developed; see e.g. References 2-8. The application of the multigrid idea results in 
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an approximately linear increase of computing time with grid refinement, allowing much finer 
grids to be used and therefore more accurate solutions to be obtained. In this paper an extension 
of the FV multigrid approach with collocated grids developed by Becker et al.’ to buoyant 
laminar flows is presented. 

In the next section the basic FV method is briefly described, followed by the description of the 
superimposed multigrid technique. The bench-mark solutions for the flow in a closed cavity with 
heat transfer through the side walls are then presented. In the final section the most important 
findings of this study are summarized. 

2. DISCRETIZATION METHOD 

The conservation equations, governing the transport of mass, momentum and heat, are 

Here p is the density, Ui and xi are the Cartesian velocity components and co-ordinate directions 
respectively, T is the temperature, Pr is the Prandtl number, p is the dynamic viscosity and gi is 
the component of the gravity acceleration vector in the xi-direction. The subscript ‘0’ denotes 
reference mean values. The second term on the right-hand side of (2) vanishes when p and p are 
constant. If the Boussinesq approximation is applied, the last term becomes 

( P - P o ) g i = P o g i P ( T -  To), (4) 
where P is the coefficient of thermal expansion and To is the reference temperature at  which p, Pr 
and po are defined. 

The transport equations are integrated over a finite number of control volumes (CVs), leading 
to balance equations of fluxes F through the CV faces, and volumetric sources S. Thus (see 
Figure 1 for the grid arrangement and notation) 

F,-  F ,  + F ,  - F ,  = S .  ( 5 )  

Evaluation of the convection and diffusion contribution to the flux F will be described for the CV 
face ‘w’; analogous expressions follow for the other faces. 

First the cell face mass flux is evaluated as 

m w  = (PU6Y)W, (6) 
where U ,  is taken to represent the mean value over the CV face; it is calculated by using an 
interpolation formula appropriate for the collocated variable arrangement used here. Details on 
this practice are given by PeriC et a1.” The mass fluxes are assumed to be known when solving the 
momentum and heat transport equations. 

The convective flux of a variable 4 is evaluated as 

where dW stands for the mean value of the transported variable (Vi or T )  at the CV face ‘w’. The 
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Figure 1. Computational grid and labelling scheme 

estimate for this value is expressed in terms of the nodal values by employing the central 
differencing scheme (CDS), which implies linear interpolation between nodes W and P. CDS is 
implemented in the solution procedure using the deferred correction approach suggested by 
Khosla and Rubin.” 

The diffusion flux involves an estimate of the mean gradient of 4 at the CV face. Here again 
CDS is employed, leading to 

Note that for CVs next to boundaries of the solution domain (see Figure 1) the convected value 
& is the boundary value, and the gradient expression in (8) reverts to two-point backward or 
forward differencing. The latter is, however, supposed to be equally accurate as the CDS 
expression for the interior CV faces, since the distance between the two nodes involved is typically 
halved. The accuracy is further increased by using non-uniform grids which are finer near 
boundaries, as will be discussed later. 

The sources are integrated over the cell volume. This is done by evaluating the specific source at 
the central point P, which is then taken to represent the mean value over the whole CV-hence 
the integration involves only multiplication of the nodal value by the cell volume (note that the 
point P resides in the centre of the CV). The source of U-momentum becomes then 

s, = - 6Y ( P ,  - P W )  + Po 9 x  8( TP - T O V X  6Y. (9) 
Finally, ( 5 )  can be rewritten as an algebraic equation of the form 

A P 4 P +  1 A n b 4 n b = S + ,  (10) 
nb 

where nb = E, W, N, S are the four immediate neighbours of point P, and 4 stands for U ,  V or T. 
For the solution domain as a whole, a matrix equation 

CAI = P I  (11) 

results. The strongly implicit procedure (SIP) of Stone” is used to relax this equation to a 
prescribed tolerance on all grids. 
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The solution of the coupled set of equations for U, V, T and P is based on the SIMPLE 
algorithm.' The momentum equations are assembled by treating pressure, mass fluxes and other 
variables as known (values from the previous iteration are used), and solved by applying one 
iteration of the SIP algorithm (inner iterations). New mass fluxes are then calculated based on the 
just calculated velocity field. Their imbalance provides the source term for the pressure correction 
equation, which is then assembled'O and solved by applying SIP until the sum of absolute 
residuals has fallen by a factor of five; the number of inner iterations is in addition limited to 15. 
The mass fluxes (they now closely satisfy the continuity requirement), velocity components and 
pressure are then corrected with the calculated pressure correction. Thereafter the temperature 
equation is assembled and relaxed by applying one SIP iteration. In all calculations presented 
here, underrelaxation factors of 05,0.5,0-5 and 0.6 were applied to U, V, P and T respectively. 

The above describes one outer iteration. The coefficients of the difference equations are then 
updated and solved in turn and the process is repeated until convergence. The convergence 
criterion used here is that the sum of absolute residuals in all equations is reduced by at least four 
orders of magnitude. This assures that the solution does not change in the four most significant 
figures. This was checked by performing calculations in which one further order of residual 
reduction was demanded. 

In the present multigrid procedure the described solution strategy is applied on all grid levels, 
the only difference being that the coarse grid equations contain additional source terms, as will be 
described in the next section. 

3. MULTIGRID METHOD 

The rate of convergence of the above solution method is highest at the beginning of the 
calculation; it becomes worse after a few outer iterations, the effect being more pronounced as the 
grid is refined. The reason is that the iterative solution procedure used removes efficiently only 
those Fourier components of the error whose wavelengths are smaller than or comparable to the 
grid spacing. The multigrid procedure aims at covering a wider spectrum of wavelengths by 
iterating on various grids, so that on each grid the corresponding error components are efficiently 
damped. 

The exact solution for any variable on grid k,  @ k ,  satisfies the equation 

{ @ k } = { y P t }  (12) 

where [ s i lk ]  and (9,) are the coefficient matrix and source term vector for the variable in 
question, based on the exact solutions on grid k of the coupled variables. 

After v; outer iterations, approximate solutions 4 k  are obtained satisfying the following 
equation: 

CAtl { 4 k  } = { s k  1 - { R k  + 
(13) 

[ A k ]  and { & }  are approximations to [ s i l k ]  and { y k }  based on the approximate solutions 4k,  and 
{ R k }  are the residuals (the difference between the left- and right-hand sides of (lo), computed with 
the updated coefficients and prevailing variable values). 

Subtracting (13) from (12) yields 

c & k ] { @ k }  = { y k )  + C A k l { 4 k } - { s k } + { R k } .  (14) 
This equation is used as the basis for multigrid coupling. We assemble an approximation to the 
above equation on the next coarser grid, k- 1, as follows: 
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Variables and operators on grid k - 1 based on the current approximate solution on the finer grid 
k are denoted by (-), and variables and operators being modified in the course of iterations on the 
coarser grid k - 1 by (A). The latter are also to be distinguished from the variables and operators 
obtained on grid k - 1 when it is the current finest grid. 

In the F V  method used here it is advantageous to build the coarser grid CVs by putting 
together four fine grid CVs as shown in Figure 2. When a collocated variable arrangement is used, 
only one set of CVs needs to be coarsened, and both fine and coarse grids fit the boundaries of the 
solution domain, which is a great advantage in comparison with the staggered variable arrange- 
ment. The storage locations on the two grids do not coincide (see Figure 2) and therefore the 
transfer of variable values from fine (k) to coarse (k - 1) grid has to be performed by interpolation 
(restriction). For this purpose bilinear interpolation, denoted by the operator 1:- ', is employed; 
thus 

I 

4 k - l  = 1k-l 4 k .  (16) 
Note that the difference equations in the FV method represent balances of fluxes through the 

CV faces and over volume-integrated sources; thus the coarse grid balance equation is equal to 
the sum of the four balance equations for the corresponding fine grid CVs (see Figure2). 
Therefore the transfer of residuals requires no interpolation, since (see Figure 3) 

(17) K 1 . J  - R : j + R ~ J + l + R : + l . i + R : + l , j + l  
k - 1  - 

- Fine grid CV 
- Coarse grid CV 

0 Fine grid variable 
0 Coarse grid variable 

Figure 2. Grid refinement and storage locations 

Figure 3. Schematic presentation of restriction 
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Although it would seem appropriate to evaluate f k - 1  in the same way, this is not done for 
consistency reasons; na-mely, it has to be ensured that the coarse grid equations become 
identically satisfied, i.e. f$k-  = &- (no correction) when Rk eq_uals zero. For this reason s k -  is 
assembled on the coarse grid in the same way as ,$- but using f$k-  ,-v?lues where dependence on 
4 occurs. Since the starting values for &- are f$k - 1,  the source terms S k  - and Sk - are identical 
in the first coarse grid iteration and thus the above requirement is met. Analogously [&- 1] is 
assembled on the coarse grid in the same way as [ i k -  1], and the two operators are also identical 
in the first coarse grid iteration. However, the initial mass fluxes on the coarse grid, which are 
used to assemble the coefficients A (sek equation (lo)), are conservatively evaluated by summing 
the fine grid mass fluxes through the corresponding CV faces (see Figure 4). Thus when the fine 
grid mass fluxes satisfy the continuity equation, this is automatically ensured on the coarse grid 
too. The coarse grid mass fluxes will only be corrected in the course of coarse grid iterations by 
the difference between the values of U, - and uk - 1, c k -  and vk - according to equation (6). 
Since the pressure operator is linear, on the coarse grid, we need to calculate only a correction to 
the fine grid pressure. The pressure correction equation produces a correction to the above 
correction while iterating on the coarse grid (each time starting from zero initial values). 

The underlined terms in (15) are calculated once and then kept unchanged during iterations on 
the coarse grid; they appear as extra source terms in equation (10). If the fine grid residuals Rk are 
significant, - the &k-l-values will in the course of v i V 1  iterations depart from their initial values 
4 k -  1. The difference represents the correction to the fine grid solution f$k calculated on the coarse 
grid. In order to apply the correction, it has to be extrapolated (prolongated) from the coarse to 
the fine grid. Bilinear interpolation, denoted by Z: - 1, is used here. The updated fine grid variable 
is then (see Figure 5 )  

- 
- - 

I I 

(6p" = f$;ld + 1: - 1 ( 4 k  - 1 - $k - 1 ). (18) 

The above describes one V-cycle on two grids. In practice more than two grids are employed; in 
this case, after v ; -  iterations on grid k - 1 the approximate solution 4k- will be transferred to 
the coarser grid k- 2 and used there as &-z, and so on. When the coarsest grid is reached, the 
reverse procedure starts, in which corrections are evaluated and transferred to the finer grid. 
These are added to the prevailing variable values there, and after v: iterations (required to smooth 
the high-frequency errors due to interpolation) the corrections for the finer grid are evaluated and 
transferred, and so on, until the finest grid is reached. 

Figure 4. Restriction of mass fluxes 
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Figure 5. Schematic presentation of prolongation 

V-Cycler Grld-Level 

Figure 5. Schematic presentation of prolongation 

V-Cycler Grld-Level 

Figure 6. Schematic presentation of the FMG procedure used; numbers indicate SIMPLE iterations on one grid level 

We have implemented our multigrid procedure in a so-called ‘full multigrid’ (FMG) fashion, as 
was also done by Becker et aL7 and PeriC et a1.* First the solution is obtained on the coarsest grid 
(typically 10 x 10 CV). This solution is then extrapolated to the next finer grid 2 and used there as 
a starting guess for the V-cycle multigrid procedure. When grid 2 is done, the solution is 
transferred to grid 3 and so on (see Figure 6). The advantage of this strategy as compared to 
starting the solution process on the finest grid is that it allows for the evaluation of the numerical 
accuracy of the solution on each refined grid, by comparing it to the solution on the next coarser 
grid.7 Also better solution estimates may be obtained by using Richardson extrapolation if the 
solutions on several grids are known. The cost of obtaining the coarser grid solutions is covered 
by the savings on the finest grid due to having good initial guesses for all variables. 

In a multigrid procedure for single equations the convergence rate (determined by the ratio of 
residual norms after two successive iterations) is monitored and used as a criterion for deciding 
when to switch from one grid to another.’ With a coupled system of equations (here four: for 
U ,  V, P and T) this practice is not easy to implement, since the rate of convergence of the various 
equations may differ and not necessarily be always monotonic. We have therefore specified fixed 
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numbers of v' (down or restrict) and vp (up or prolong) iterations in the V-cycle without 
attempting to optimize them. These are indicated in Figure 6, which represents the FMG-FAS 
scheme used in our calculations. Other authors have also found this practice to be sometimes 
more efficient than a dynamic criterion. 

4. RESULTS OF CALCULATIONS 

Flow in a square cavity with insulated top and bottom walls and with side walls maintained at 
constant but different temperature (see Figure 7) is often used for testing numerical solution 
methods.', A bench-mark solution for this problem has been published by de Vahl Davis.' He 
used a streamfunction-vorticity FD method with grids up to 81 x 81 points, and employed 
Richardson extrapolation to obtain more accurate bench-mark solutions for Rayleigh numbers 
(Ra) up to lo6. In this paper multigrid calculations for Ra= lo4, lo5 and lo6, with grids as fine as 
640 x 640 CV, are presented. 

Starting with the coarsest grid of 10 x 10 CV, the grids were refined until the difference between 
the mean Nusselt numbers calculated on the two finest grids was lower than 0.02%. Table I 
shows the fluid properties and cavity dimensions used in the calculations. 

Both uniform (square) and non-uniform grids were employed. The latter had the smallest mesh 
size near walls and the largest at the centre. The smallest dx on the 10 x 10 CV non-uniform grids 
was taken to be 1/20 of the cavity width (i.e. the same as on a 20 x 20 CV uniform grid); the 
spacing was then increased by a constant factor (expansion ratio) q1 = 1.352, i.e. 

6 X i  = 'I, 6 X i -  1. (19) 

Figure 7. Geometry of the test case and boundary conditions 

Table I. Fluid properties and cavity dimensions used in calculations 

Ra P P B Pr 9 T H  Tc L H 

lo4 1.19 1.8 x 0.00341 0.71 9.81 12 2 0.021277 0.021277 
lo5 1.19 1.8 x 0.00341 0.71 9.81 12 2 0.045841 0045841 
10" 1.19 1.8 x lo-' 0.00341 071 9-81 12 2 0.098761 0098761 
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The coarser grids were subsets of the finer grids; each coarse grid cell width dx was divided in 
two parts, keeping the expansion factor constant. The latter becomes smaller as the grid gets finer, 
according to 

q k  = J ? k -  1 '  (20) 
Thus the finest grid with 640 x 64OCV was almost uniform, with q7 = 1.0047; however, the 
smallest 6x on this grid was equal to L /  1490. Table 11 shows the smallest grid spacing as a 
fraction of cavity width on various grids (distribution of grid lines in the x- and y-direction is the 
same). Figure 8 shows segments of the first four grids (one quarter of each). Note that the grid 
lines (CV boundaries) of the coarse grid remain also grid lines of the fine grid, i.e. one coarse grid 
CV makes up exactly four CVs of the refined grid. This is an important feature of the present 
multigrid method which enables the conservation principle to be retained on all grid levels, as 
noted in the previous section. 

Streamlines and isotherms predicted on the finest grids for flows at Ra=105 and lo6 are 
presented in Figures 9(a)-9(d). These show typical features of such flows known from the 
literature.' Little difference could be observed visually between such plots obtained on grids 
80 x 80 and finer. However, quantitative differences do exist, as will be discussed below. 

Table 11. Smallest 6x as a fraction of cavity width for various grids 

Grid: 10 x 10 20 x 20 40 x 40 80 x 80 160 x 160 320 x 320 640 x 640 

Uniform 0.1 0.05 0.02 5 0.0125 0.00625 0003125 04M)15625 
Non-uniform 0.05 0.023117 0.01 1122 0.0054561 04M27024 00013448 OdXM672 

i 

e 
Monitoring 

.- 

location 

Figure 8. Segments of the first four grids (one quarter of each) 
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STREAM LINKS 
A 0 00022117 
I - 0  000197.8 
C - 0  000172IO 

F - 0  00009(17, 
G 0 00007406 

I - 0  00002469 
J 0 00000000 

Kn TO CCWGUR VNUCS 

; :; :::;:::; 
n - 0  00001917 

a) 

KCT %%!%R?,%LS 
A 11 500 
I 10 500 
C 9 500 
0 a 500 c 7 so0 
r 6 500 
G 5 500 
H + 500 
1 3 500 
I 2 500 b) 

T M P E R A W R E  
KEY TO C M r m R  V N U E  

A I 1  500 
I I 0  100 
C 9 500 
0 8 so0 
C 7 500 
r 6 500 
G 5 SO0 
H 4 500 I 1 SO0 
J 2 SO0 d) 

Figure 9. Predicted streamlines and isotherms: (a), (b) Ra = lo', 320 x 320 CV grid; (c), (d) Ra = lo6, 640 x 640 CV grid 
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Comparisons have shown that the higher resolution of the wall boundary layers achieved with 
non-uniform grids increases the accuracy of the solutions, although formally the second-order 
accuracy is lost when the grid becomes non-uniform. The accuracy of solutions on various grids 
(i.e. grid dependence) is checked by comparing the mean Nusselt numbers. The latter is defined as 

where Q is the actual heat flux across the cavity and Qc is the heat flux that would result from pure 
conduction: 

The heat flux Q may be calculated by summing the convection and diffusion fluxes through the 
CV faces along any grid line at x = constant. In the FV method used here, owing to its inherent 
conservativeness, it is equal (to within the accuracy determined by the convergence criterion) to 
the wall heat flux. The latter is determined by the difference in temperatures at the wall and at the 
centres of the near-wall CVs (see equation (8) and Figure 1). It should be noted that some authors 
(including de Vahl Davis') use different formulae for the calculation of the temperature gradient 
at the wall when evaluating Nu from the numerical solution than those actually used to obtain 
that solution (usually higher-order expressions are used for Nu). However, the only consistent 
expression is the one used in the solution of the temperature equation, since it defines the 
boundary condition for the solution. 

Local and average Nusselt numbers were calculated for the cold and hot walls; these were 
identical to six significant figures, consistent with the convergence criterion used. Note that the 
width 6x across which the temperature gradient is calculated is half the near-wall mesh size; for 
the 640 x 640 grid this distance amounts to only 112980 of the cavity width. 

Figures 10(a)-10(c) show the predicted mean Nusselt numbers as a function of the number of 
CVs for the three Rayleigh numbers. For Ra= lo5 and lo6, results on both uniform and non- 
uniform grids are shown. Convergence towards the (same) grid-independent values is obvious in 
all cases. However, solutions on non-uniform grids are more accurate. Obviously, the accuracy is 
strongly dependent on the near-wall grid spacing. The non-uniform grid with 10 x 10 CV has the 
same near-wall 6x as the uniform 20 x 20 CV grid; surprisingly, the calculated %value on the 
coarsest non-uniform grid is for Ra = lo5 more accurate than the value obtained on the uniform 
20 x 20 CV grid. In all cases the non-uniform grid results are more accurate than the results on a 
uniform grid with twice as many CVs in each direction; thus one level of grid refinement is saved. 

For Ra = lo4 the desired accuracy was achieved on a 160 x 160 CV grid. One further 
refinement was necessary for Ra = lo5, and one even more for Ra = lo6. This is due to the fact 
that the wall boundary layers become thinner as Ra increases, thus requiring finer grids for their 
resolution. 

Apart from the average Nusselt number, the following quantities were also monitored 

(1) velocity components V,,,, V,,, and temperature T,,, at the reference location, indicated in 

(2) the maximum horizontal velocity component Urn,, in the vertical midplane x = L/2 and its 

(3) the maximum vertical velocity component VmaX in the horizontal midplane x = H/2 and its 

(4) the maximum value of the local Nusselt number on the cold wall, Nu,., and its position 

Figure 8 

location y,, 

location xmax 

Y N u .  
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& 
5 . 4  
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5 . 0  

4 . 8  
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1 0 0  1 0 0 0  10000 1 0 0 0 0 0  #CV 
4 . 4  'I l l! ' "!""!. ' " ! " " !  ' "!""! ' ' 1 

100 1 0 0 0  10000  1 0 0 0 0 0  #CV 

CV 

Figure 10. Predicted mean Nusselt numbers as a function 
of the number of control volumes (-, non-uniform 
grid; ---, unifrom grid); (a) Ra=104; (b) Ra=lOS; 

100 1000 10000 100000 #CV (c) Ra = lo6 

The above reference location lies in a corner of four CVs on all grids, and the values there are 
obtained by bilinear interpolation (see Table 111). Owing to the fact that computing points on 
various grids do not coincide, such a location is found to be the best choice; the same 
interpolation is applied on all grids and its accuracy is consistent with the discretization accuracy. 
Also, the two centrelines do not pass through the computational points but run along the CV 
faces; hence the velocity values there are obtained by linear interpolation. Numax is the maximum 
value calculated at a wall boundary node. As the accuracy of the solution increases with grid 
refinement, the indicated value becomes closer to the actual maximum; on the finest grids the 
Nu-values at neighbour nodes differed from the maximum by less than 0.0025%. The x- and 
y-co-ordinates are normalized with the cavity width L, and the velocities are normalized with the 
diffusion velocity, defined as 

Note that the monitoring locations on uniform and non-uniform grids do not correspond to the 
same physical location; hence the values recorded there cannot be compared. 
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Table 111. Monitored values as predicted on various grids for various Ra  numbers: (a) Ra  = lo4, non-uniform grid; 
(b) Ra = lo5, uniform grid; (c) Ra = lo5, non-uniform grid; (d) Ra = lo6, uniform grid; (e) Ra = lo6, non-uniform grid 

(a) 

l o x  10 

5.97 104 
4.59770 
8.10404 

15.0954 
0.83666 

18.1414 
0.08382 
3.6262 
0.83665 
2.22596 

20 x 20 

5.95915 
4.53688 
8.09741 

15.8602 
0.81 551 

19.1925 
0.09944 
3.5585 
086123 
2.24003 

4 0 x 4 0  

5.93957 
4.51889 
8.09437 

16.0955 
082827 

19.5303 
0.12779 
3.5373 
0.85 108 
2.24360 

80 x 80 

5.93388 
4.51509 
8.09341 

16.1630 
0.82246 

196082 
0.12261 
3.5326 
0.85667 
2.24446 

160x 160 

5.93242 
451417 
8.09315 

16.1759 
0.82551 

19.6242 
0.12009 
3.5313 
085399 
2,24468 

320 x 320 

- 

- 

Grid: 10 x 10 20 x 20 40 x 40 80 x 80 160 x 160 320x 320 640x640 

25.7400 
-0.2312 

4.3701 3 
33.4980 
0.85000 

74.7740 
0.05000 
9.3456 
0.95000 
550768 

25.9937 
0.1 57 19 
4.608 1 1 

34.58 13 
0.87500 

66.4046 
0.07500 
9.1 349 
0.97500 
4.9027 1 

25.4630 
0.41786 
4.71222 

34.7396 
0.86250 

68.8438 
0.06250 
8.1 507 
093750 
4.6 165 3 

25.3120 
047067 
4.73885 

34.7499 
0.85625 

68.5600 
006875 
7.8289 
0.91875 
4.54516 

25.2752 
0.47940 
4.74567 

34.7398 
0.85312 

686465 
0.06562 
7.7468 
0.92253 
4.52751 

25.2664 
0.48079 
4.74739 

34.74 14 
0.85468 

68.6 187 
0.06719 
7.7269 
0.9 171 8 
4.52310 

~~ 

160x 160 320 x 320 640x 640 Grid 10 x 10 20 x 20 4 0 x 4 0  80 x 80 

22.8893 
6.18282 
5.25255 

33.6327 
0.83665 

63.5864 
0.08381 
9.0589 
0.97499 
4.77266 

22.5537 
5.75680 
538785 

34.4483 

68.8421 
006563 
8.0665 
0.93436 
4.58407 

0.86124 

22.3195 
5.45072 
5.42129 

34.6324 
0.85106 

68.0898 
0073 15 
7,8018 
0.92684 
4.53727 

22.2560 
5.34922 
5.42945 

34.7 132 
0.85665 

68.5383 
006902 
7.8289 
091444 
4.52556 

~ 

22.2397 
5.32148 
5.43 149 

34.7342 
0.85399 

68.6239 
0.06701 
7.7252 
0.91660 
4.52261 

22.2355 
5.31465 
5.43198 

34.7385 
0.85535 

68.6359 
0.06602 
7.7214 
0.9 1767 
452188 

10 x 10 

57.6861 
- 12.0221 

63.3419 
4.74786 

0.95000 

0.05000 

0.95000 
8.46097 

194.532 

12.351 

20 x 20 

51-2769 
1.85373 
4.07203 

0.87500 

0.02500 

0.97500 

63.2168 

242.719 

20.959 

10.5976 

4 0 x 4 0  

52.1035 
0.86255 
4.34212 

0.86250 

003750 

0.98750 
9.42167 

65.3710 

223.412 

20900 

80 x 80 160 x 160 320 x 320 640x640 

51.2836 
0,83833 
4.41893 

0,85625 

0.03125 

0.96874 
8.97719 

649944 

218.312 

18.638 

51.0290 
0.84858 
4.43779 

0.85312 

0.04062 

0.96562 
8.86302 

64,8659 

219.861 

17.810 

50.9677 
0.84958 
444263 

0.85156 

003906 

0.96094 
8.83459 

64.8408 

220.438 

17606 
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Table 111. (Continued) 
(4 

Grid 10 x 10 20 x 20 40 x 40 80 x 80 160 x 160 320 x 320 640 x 640 

Urn," 55.6 177 
Vmm - 15'387 
TI," 354255 
U n n x  56.5397 
Ymax 0.9 161 9 
Vmax 247.41 1 
xmax  0.02500 
N k a z  22.815 

0.97500 
Nu 10.4798 

56.4353 
-6.7214 

4.0308 1 

086124 

003656 

098844 
9.25287 

63.3498 

225.384 

20.627 

56.8531 
- 4.4433 

64.2963 
4.12825 

0.85106 

0,04303 

0.97041 
8.93128 

218.163 

18.374 

57.0232 
- 3.9898 

4.15241 

0.85665 

0.03947 

0.96053 
8.85148 

64.6276 

220.497 

17.743 

57.0729 
- 3'8843 

415852 

0.84850 

0.03775 

096225 
8.83 170 

64.7885 

220.641 

17.587 

57.0857 
-3.8586 

4.1 6006 

0.84990 

0.03859 

0.96 14 1 
8,82677 

64.8249 

2 2 0.5 0 7 

17.549 

~~~ 

57.0889 
-3.8522 

4.16045 

0.85036 

0.03887 

0.96098 
8.82554 

64.8340 

220.473 

17.540 

Table IV. Grid-independent results estimated by extrapolation 

104 5.93193 4.51387 8.09307 16.1802 19.6295 3.53087 2.24475 
105 22.2341 5.31237 5.43215 34.7399 68.6396 7.72013 4.52164 
106 57'0901 -3.8501 4.16057 64.8367 220.461 17.536 8.825 13 

All quantities are seen to converge monotonically towards a grid-independent value. It is 
interesting to note that the mean Nusselt number for Ra = lo4 increases with grid refinement, 
while the maximum value decreases; for other Rayleigh numbers both Nu and Nu,,, decrease 
with grid refinement. 

We observe that the difference between the values obtained on grids k and k-1 is about a 
quarter of the difference between grids k - 1 and k - 2. This is approximately valid for all variables 
on all but the coarsest grids. Using this reduction rate as the basis for extrapolation, we arrive at 
more accurate ('grid-independent') values 

The above expression corresponds to the Richardson extrapolation for second-order schemes. 
The CDS scheme for convection used here is of second order on both uniform and non-uniform 
grids; the diffusion approximation is of second order only on uniform grids, and on non-uniform 
grids it has a first-order truncation error term multiplied by 1 -q .  Since q tends to unity as the 
grid gets finer, the overall discretization can be considered to be of second order. Extrapolated 
values, calculated from the above equation and the results of the two finest grids, are summarized 
in Table IV. Approximately the same values are obtained when the other two grids are used 
(except for the three coarsest ones). 

That the above extrapolation is accurate can be concluded by comparing the values obtained 
from the results of calculations on uniform and non-uniform grids. For example, extrapolated 
average Nusselt numbers for Ra = lo5 and lo6 differ only in the sixth significant figure (less than 
0.0002%)), which is the limit of the accuracy specified by the convergence criterion employed in 
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the calculations. This also certifies that the present solution method does converge to the unique 
solution irrespective of the kind of grid used. The results of calculations on the finest (non- 
uniform) grids differ from the estimated grid-independent values by less than 0.01 %, which is the 
believed accuracy of the present computations. 

Knowing the grid-independent results, solution errors on various grids can be estimated by 
subtracting the corresponding values of Table 111 from those of Table IV. Figures 1 l(ak1 l(d) 
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Figure 11. Estimated solution errors as a function of grid size for various Re numbers: (a) V,,,,,; (b) Urn,,; (c) T,,,; (d) 
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show the errors for V,,,, V,,,, T,,, and Nu plotted against the smallest dx as a representative 
grid spacing, using a logarithmic scale. All curves indicate a slope of around 2 (2.2 seems to be the 
best fit). There is little difference between the curves for uniform and non-uniform grids (the 
uniform grid ones seem to be slightly steeper for larger values of dx). Thus the second order of the 
solution method is retained on non-uniform grids as well. However, the accuracy of the results 
obtained on non-uniform grids is almost one order of magnitude better than on uniform grids 
having the same number of nodes (see Figure 1 l(d)). Accuracy is obviously determined by the 
mesh size in regions of high variation of the dependent variables-in this case near walls; the fact 
that the grid is expanding does not seem to affect the results appreciably. 

Compared with the results of de Vahl Davis,' the values of Table IV, which are accurate to 
within approximately 0.001 %, show small discrepancies. These are, however, well within the 
accuracy estimates given by de Vahl Davis. For example, for he estimated the bounds to be 
0.2%, 0.3% and 1.0% for Rayleigh numbers lo4, lo5 and lo6 respectively; the difference from our 
results is 0.08%, 0.06% and 0.2% respectively. It is, though, interesting to note that de Vahl Davis 
gives different bench-mark solutions for the average Nusselt numbers at the cavity centre and at 
the walls (0.2% difference at Ra = lo6), although these -even when a non-conservative solution 
method is used - should become identical as dx tends to zero. This is believed to be due to the 
inconsistency of Nu evaluation, as noted above. 

The present calculations on such fine grids were only made possible by application of the 
multigrid scheme presented in the previous section. Its efficiency can be assessed by comparing 
the computing times and numbers of iterations required to obtain solutions of the same accuracy 
and starting from the same initial guess with and without multigrid. Table V shows the numbers 
of iterations required for convergence on various grids and Table VI the corresponding com- 
puting times for the two methods and Ra = lo5. Single-grid calculations were pursued to 
convergence only up to the 80 x 80 CV grid, since the computing times for finer grids would have 
been excessively long (see the estimates in Table VI). 80 x 80 CV single-grid calculations take 
already about 14 times longer than when multigrid is employed (the same computer code is used, 
with the MG switch set on or off). The estimated factor for the 320 x 320 CV grid is approxim- 
ately 100. The computing time for the multigrid method varies roughly proportionally to the 

Table V. Number of iterations required for convergence on the finest grid by the 
multigrid and single-grid method for Ra = lo5 

Grid l o x  10 20 x 20 40 x 4 0  S O X  80 160x 160 320 x 320 

SG 53 83 171 406 1200* 4ooo* 
MG 53 56 41 25 22 29 

* Estimated. 

Table VI. Computing time required for convergence on the finest grid by the multigrid 
and single-grid method for Ra = lo5 

Grid 10 x 10 20 x 20 40 x 40 80 ~ 8 0  160 x 160 320 x 320 

SG 0-80654 4.346 35.56 451.106 5 4 0 *  65000* 
MG 0.80654 3.3315 11502 32457 131.96 6908 

* Estimated. 
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Figure 12. Residuals on a 160 x 16OCV grid as a function of the number of fine grid iterations (-, multigrid; 
- - -, single grid): (a) U ;  (b) V ;  (c) P ' ;  (d) T 

number of CVs (number of iterations approximately constant on finer grids), while for the single- 
grid method it is proportional to the square of the number of CVs (number of iterations 
increasing linearly as the grid is refined). It should be noted that in both cases the solution on the 
finest grid starts from the extrapolated solution on the next coarser grid; the cost of obtaining this 
solution is not included in the computing times of Table VI. Similar relations are valid for other 
Rayleigh numbers; lower Ra-values would however require less, and higher more iterations. 
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If the convergence criterion were made tighter, the ratios of computing times for the two 
methods would have been even more favourable for the multigrid version. This is apparent from 
Figures 12(a)-12(d), which present the residual norms on a 160 x 160 CV grid as a function of the 
number of iterations performed. In the multigrid calculations the residuals fall at a constant rate 
for all variables (the peaks after one V-cycle is finished are believed to be due to interpolation 
errors introduced when changing grids and to the coupling and non-linearity of equations). On 
the other hand, in the single-grid method the residuals fall fast only at the beginning of the 
iteration process, their change becoming slower and slower as the process continues. This 
behaviour becomes more pronounced as the grid gets finer, while in the case of multigrid the rate 
of convergence remains about the same (see Table V). 

5. CONCLUSIONS 

The multigrid method presented in this paper provides for a fast convergence of the finite volume 
solution procedure with collocated grids. It has been applied to the natural convection flow in a 
square cavity at Rayleigh numbers lo4, lo5 and lo6, and enabled very accurate solutions to be 
obtained on grids as fine as 640 x 640 control volumes. The results may be summarized as 
follows. 

1. The solution method used converges monotonically to a unique grid-independent solution 
as the grid is refined. 

2. With the central differencing scheme employed for both convection and diffusion fluxes the 
solution method shows second-order convergence for both uniform (square) and non- 
uniform (expansion ratio up to 1.4, aspect ratio up to 4) grids. 

3. The accuracy of the solutions is greatly improved by employing non-uniform grids, with 
smaller spacing near walls; typically one level of grid refinement can thus be saved. 

4. The results presented here are believed to be accurate to within 0.01%. Earlier published 
bench-mark solutions of the same problem differ from the present ones by up to 0.2% in 
Nusselt number and up to 1.6% in maximum velocity (at Ra= lo6; for lower values of Ra 
the differences are smaller than 007% for all quantities). 

5. Grid-independent results are estimated by extrapolation. Values obtained by extrapolation 
from the results of uniform and non-uniform grids agree to within 0.0002%; these are hence 
believed to be accurate to within 0.001 YO. 

6. The multigrid version of the solution method requires only about 1% of the computing time 
needed by the standard version on a 320 x 320 CV grid. The computing time requirement 
increases linearly as the grid is refined, as opposed to the quadratic increase in the standard 
method. 

The present multigrid method can easily be extended to non-orthogonal grids and to the 
solution of additional equations (e.g. for the swirl velocity, turbulence quantities, etc.). Such 
extensions are presently under way. 
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